
SSSyyysssttteeemmm	 	 	 fffooorrr	 	 	 AAAtttmmmooosssppphhheeerrriiiccc	 	 	 MMMooodddeeellliiinnnggg	 	 	

SSSAAAMMM	 	 	
VVVeeerrrsssiiiooonnn	 	 	 666...111000	 	 	

User’s Guide

Marat Khairoutdinov

Marat.Khairoutdinov@stonybrook.edu

Updated: March 2, 2012

 1

Introduction

The System for Atmospheric Modeling (SAM) is a non-hydrostatic anelastic
model that can be used to simulate cloudy atmospheres in a wide range of scales,
from boundary-layer turbulence to hurricanes. It can be configured as a Large-
Eddy Simulation (LES) model to study cloudy or cloud-free boundary layers, or
as a Cloud-Resolving Model (CRM) to study deep convective clouds and meso-
scale cloud systems. The SAM has been successfully ported to many different
computing platforms including massively parallel supercomputers. This
document provides a brief, but, hopefully, sufficient guide for a new user to
compile, set-up a case, and run SAM. The details of theoretical formulation are
given by Khairoutdinov and Randall (2003, J. Atmos. Sci., pp. 607-625). The
SAM’s Fortran code, especially its dynamical core, mostly follows the paper,
although there have been a few changes, bug fixes, and extensions introduced to
the code over the years, most are not yet formally documented.

Files and Directories

A listing of the SAM root directory may look as the following (your model
distribution may be slightly different but the essential files should be similar):

The directory SRC contains all the source-files of the model. The directories
ARM0003, ARM9707, BOMEX, GATE, ASTEX209, TOGA, etc. are so-called
case-directories. Each case-directory contains files with initial and forcing data
necessary to run a particular simulation case. A user can easily create new case-
directories. SAM executable is usually built in and run from the root directory
with the output usually written elsewhere using symbolic links. The file
CaseName sets the name of the current (run-time) case-directory.

The file Build is the C-shell script used to build the SAM executable and create
additional output directories as well as symbolic links. It sets up several
environmental variables and calls a suitable version of the make-utility to

 2

compile the code. Note that despite presence of a Makefile, the make or gmake
utility should not be directly used to compile SAM.

The UTIL directory contains the source files to build utilities that convert the
model output files into the netcdf files among other things. Unlike SAM, the
make or gmake utilities should be used to compile many conversion utilities
found in the UTIL/SRC directory.

The SCRIPTS directory contains some useful C-shell scripts and NCL (NCAR
Command Language) scripts that are supplied by the author as a courtesy, but
currently with no explicit documentation. Note that all SAM’s output produces
files that can easily be converted to netcdf format using the conversion utilities in
UTIL directory.

Building executable

In order to build the SAM executable, the following steps are taken:

Step 1: Editing Build script

If SAM is compiled for the first time on a particular computer, you need to edit
the Build script to set a few environmental variables required for the compilation
process.

First, the variable SAM_SCR should be defined. The SAM executable is always
run from in the SAM root directory, which is usually located in a user’s home
directory where it cannot be accidently erased by a scratch-disk sweeper.
However, user home directories usually have quite limited disk space. Typically,
on supercomputer systems, a user has access to a much larger ‘scratch’ disk space
where the output is typically stored. The SAM_SCR variable points to that
remote directory where all the output files generated by the model will be written.
For example, the following line defines a directory with the same name as the
SAM root directory in the scratch-disk directory /scratch/marat:

setenv SAM_SCR /scratch/marat/SAM6.9.1

It is always a good practice to use different output directories for different SAM
home directories. When running on a personal computer or UNIX-cluster, the
root directory can reside on a personal disk with sufficiently large space to write

 3

the model output. In that case, a user can set the SAM_SCR variable to point to
the SAM root directory. Generally, an explicit path like ./ could be used; to be
safe, the following line can be used to generate a full path (note the difference
between Unix command-execution back-quote ` and strings quote ‘):

setenv SAM_SCR `pwd`

When the Build script is executed, the directory defined by the SAM_SCR
variable is created, unless, of course, it already exists. Several subdirectories are
also created. These subdirectories are OBJ, OUT_STAT, OUT_2D, OUT_3D,
OUT_MOMENTS, OUT_MOVIES, and RESTART. In the case when the
SAM_SCR variable points to a directory different from the SAM root directory,
the corresponding symbolic links to the above subdirectories are created in the
root directory.

The RESTART directory is used to store the files necessary for the model
continuation of a previous run or a new branch run using earlier run. The OBJ is
the directory where all the object files and dependency files are written. The
OUT_* are the directories where the model output files are written. Each output
directory contains specific groups of files:

OUT_STAT time-height horizontally averaged statistics;
OUT_2D 2D x-y fields;
OUT_3D 3D snapshots of various fields;
OUT_MOMENTS 3D fields of various statistics on degraded grid;
OUT_MOVIES files used for visualization and movies.

The variable ADV_DIR defines at the compile time which monotonic and
positive definite scheme is used for advection of all scalars in the model. There
are currently two choices, the original SAM’s advection scheme based on
Smolarkiewicz’ MPDATA scheme with monotonic corrector, and a recently
developed by one of the SAM users flux-corrected transport scheme
ULTIMATE-MACHO based on 5th-order advection scheme (Yamaguchi et al.
2011, Mon. Wea. Rev., pp 3248–3264). The later scheme is expected to be less
numerically diffusive than MPDATA, although there has been relatively little
experience running SAM with that scheme since it became available starting with
version 6.9. The computation expense of using either scheme is quite similar.

The variable RAD_DIR defines a specific radiation package that will be used at
compile time. Currently, two radiation packages are supplied with SAM. These

 4

are the CAM3 radiation (directory SRC/RAD_CAM) and RRTM (directory
SRC/RAD_RRTM) radiation packages. Both packages are exported from the
NCAR Community Climate System Model (CCSM).

The variable MICRO_DIR defines a specific cloud-microphysics package that
will be used at compile time. There are currently three choices for the cloud
microphysics: 1) the original SAM’s single-moment microphysics (directory
SRC/ MICRO_SAM1MOM), 2) double-moment microphysics (Morrison et al.
2005; directory SRC/MICRO_M2005), and 3) simple drizzle microphysics
(directory MICRO_DRIZZLE), which is a simplified (drizzle only) version of
Khairoutdinov and Kogan (2000) microphysics. Note that a user can easily
develop his/her own or port some existing microphysics package using a
microphysics-template directory MICRO_TEMPLATE. The choice of
microphysics can significantly affect the wall-clock computer time because of
different number of the microphysics prognostic variables. Transporting the
microphysics variables using positive definite monotonic schemes can constitute
main cost of running the model. The standard SAM1MOM microphysics is the
least expensive option. The M2005 microphysics is the most comprehensive.

The variable SGS_DIR defines a subgrid-scale (unresolved) model used by
SAM. The original SAM’s SGS closure based on 1.5-order closure (prognostic
SGS turbulent kinetic energy (TKE) and the stationary form of it called the
Smagorinsky scheme is in the SRC/SGS_TKE directory. Hopefully, in the future
there will be more choices for the SGS model. Note that any user can easily
develop his/her own or port some existing SGS package to SAM. The procedure
is described in the template directory SGS_TEMPLATE.

Finally, the GNU-make utility command (gmake or gnumake) should be
specified. It is also possible to use any make-utility other than GNU-make as long
as it supports the VPATH environmental variable.

Step 2: Editing Makefile

The Makefile supplied with the model has already been setup to compile on
several platforms. If your platform is already supported, you would still need to
check the corresponding subsection of the Makefile to see if the compiler names,
options and library paths are correct.

If you don't see your platform in the Makefile, you would have to create your
own subsection. Use other subsections as templates. To find out the name of your

 5

system that should be used in ifeq ($(PLATFORM),... statement, execute the
uname command at the command prompt (if using UNIX-like system).

The Makefile doesn’t have any source-file names and dependencies hardcoded
(imaging, people still do that even for well-known operational models!). Instead,
all the file dependencies needed by the make are generated automatically using
the scripts written in perl, which I shamelessly borrowed from the CCSM
distribution and adopted for SAM (CCSM programmers are amazing!).
Therefore, compilation process requires that your system has the Perl scripting
enabled. By default, it is assumed that the Perl executable perl is located in the
/usr/bin directory. If a directory other than /usr/bin is used in your system, you
would need to edit the first lines of each perl-script to set the correct path. The
scripts are located in SRC/SCRIPTS directory. The automatic generation of file-
dependencies means that you can add your own source files to SAM and they
will be compiled and linked automatically!

If you successfully added a new platform subsection that compiles the model,
please email your Makefile to the author, so that your platform’s Makefile
additions are included in the future releases of the model, which would make life
of future SAM users a bit easier.

Step 3: Editing SRC/domain.f90

Before compiling SAM by running the Build script, you should set the
dimensions of the computational grid set in the file SRC/domain.f90. The
variables nx_gl, ny_gl, and nz_gl specify the domain sizes in x, y, and vertical z
directions, respectively. When developing SAM, I consciously avoided
dynamical allocation of arrays (I forgot the exact reason why, probably to aid
compiler optimization of the code), so each SAM executable can run on a
predefined grid only.

Because of particular Fast-Fourier-Transform subroutines, the horizontal domain
dimensions nx_gl and ny_gl can only be the factors of 2, 3, and 5. For example,
nx_gl=240 is allowed (240=2*2*2*2*3*5), but nx_gl=168 is not because of of
the factors is 7 (168=2*2*2*7*3). The performance of the model may strongly
depend on the choice of the domain dimensions because of issues like cache
memory sizes, etc. It is, therefore, a good idea to test the model efficiency using
several dimensions in a narrow range. Usually, the power-of-two dimensions,
like 64, 128, 512, are the safest bet. If you set the YES3D variable to 0, the model
will run as a 2-D model (x-z domain). In that case, you still need to set ny_gl and

 6

nsubdomains_y explicitly to 1. Don’t also forget to use high levels of compiler
optimization, although carefully as compilers are notorious for inserting
incorrectly optimized code. If the model crashes for unexplained reason or
produces strange looking results, one of the first thing to do before plunging into
debugging mode is to reduce optimization level or switch it off altogether to see
if the model run normal. If it does, then compiler optimization bug is the likely
culprit (it happens more often than you think).

The SAM uses the Message-Passing Interface (MPI) protocol to run on parallel
computers. If your system has multiple processors, and MPI library is available,
the model is easily set up to run on multiple processors. Currently, there is no
OpenMP support for multithreading, so SAM is a pure MPI model. For parallel
runs, the model domain is divided into equally sized subdomains of the same
height as the global domain, one subdomain per processor. The number of
subdomains in x and y directions are given by the nsubdomains_x and
nsubdomains_y, respectively, so that the total number of processors equals to
nsubdomains_x*nsubdomains_y.

The rules for choosing the number of subdomains and, hence, the total number of
processors are fairly simple. The global domain dimensions nx_gl and ny_gl
should be divisible without remainder by nsubdomains_x and nsubdomains_y,
respectively. If either nx_gl or ny_gl is not divisible without remainder by the
total number of processors, then the number of pressure levels nz_gl should be
divisible by the total number of processors. If both nx_gl and ny_gl are divisible
without remainder by the total number of processors, then an arbitrary number of
vertical levels can be used. Generally, the number of grid points in a horizontal
direction is larger than the number of the vertical levels. Therefore, the maximum
number of processors that can be used for a grid of given size depends mostly on
horizontal dimensions. For example, for 512 x 512 x 64 grid in x, y, and z, the
maximum number of processors that can be used is 512 (e.g.,
nsubdomains_x=16, nsubdomains_y=32), while for 256x512x64 grid it is 256.
For the 2-D version of SAM (don’t forget to set YES3D=0 in that case), the
number of levels should always be divisible by the total number of processors;
for example, for 64 levels, you can use, 4, 8, 32, and 64 processors, bit not 20.

If nsubdomains_x and nsubdomains_y are both set to 1, the compiled code can be
run as a serial job that is using a single processor (back to 80s!). The MPI is not
used in this case, but the MPI libraries would still be linked as the model doesn’t
use the C-preprocessor code-brackets and, therefore, there is no direct way to
remove all the MPI related code during compilation. If a single-processor set-up

 7

is used and there are no MPI libraries installed, you could avoid that compilation
problem by replacing task_util_MPI.f90 with task_util_NOMPI.f90 (both files
found in SRC directory). (The automated dependency-builder script for the make
procedure looks only at the files that end with .f, .f90,.f95, and .c. Therefore, to
avoid compilation of task_util_MPI.f90 together with task_util_NOMPI.f90, you
should change its extension .f90 to, for instance .f9000, like task_util_MPI.f9000,
while task_util_NOMPI.f9000 should be renamed to task_util_NOMPI.f90.)

Finally, domain.f90 also sets the number of tracer arrays ntracers. If you don’t
want to transport any tracers around, just leave ntracers = 0 .

Step 4: Compiling SAM

After the first three steps are completed, it is time to compile the code. Just run
the edited Build script by executing

> Build

or, if failed and using csh or tcsh, by

> csh Build

Upon successful outcome, your base SAM directory would look similar to the
following:

The long name of the executable is to provide an easy way of making sure that
the desirable advection scheme, radiation and microphysics packages are used at
the run-time.

The executable should be run using exactly the number of processors implied by
the SRC/domain.inc file. For example, if nsubdomains_x = 2 and nsubdomains_y
= 4, then the number of the requested processors should always be equal to 8. On
a system that uses mpirun to launch parallel jobs, the command would be similar
to

 8

> mpirun -np 8 SAM_RAD_CAM_MICRO_SAM1MOM

To run in the background rather than interactively and using a file for the printout
(e.g., with the name out) instead of a terminal, you could use a slightly expanded
command:

> mpirun -np 8 SAM_RAD_CAM_MICRO_SAM1MOM < dev/null > out &

There are other ways of launching parallel jobs, for example batch systems.
However, these issues are system dependent and, therefore, are beyond the scope
of this document.

We are almost done. But before you run the model, you need to specify the
CASE!

Setting up a Case

To choose a case, you need to edit the CaseName file, which simply contains the
name of the corresponding case-directory. Each case-directory should always
contain the following files in ASCII format:

prm - the file containing the namelists for the model parameters. The namelist
variables are listed further down the text.

snd – the file containing the soundings that are used to specify initial sounding,
and, in the absence of the lsf file, the soundings that the model solution can be
nudged to. The snd file contains soundings for several time points. The variables
are height and/or pressure, potential temparature, water vapor mixing ratio, and
zonal and meridional velocity components. The model will use linear
interpolation in time and in the vertical to produce the initial sounding; therefore,
minimum two time samples are needed. If only one sounding is available, still,
the snd file should contain at least two identical soundings separated in time for
the model to initialize correctly (see the BOMEX case, for example).

While the files above are absolutely essential to run SAM, the following files are
optional in the sense that, in principle, the model can be configured to run
without them:

 9

grd - specifies the vertical grid unless dz_const=.true., in which case the constant
dz vertical grid step is set by the namelist fiel prm. The model uses Arakawa –C
staggered grid. The file contains the height of scalar mid-levels (in meters), not
interface levels, starting from the levels near the surface. The surface is the first
interface level; hence, the first mid-level scalar level is between the surface and
second interface levels. Note that grd file specifies mid-levels only. The interface
levels will be computed automatically. If you want to specify vertical grid that
consists of the layers of the same thickness, say, 10 m, then the grd file would
contain the following heights:

5.
15.
25.

You don’t have to specify all levels implied by the nz_gl. though. The algorithm
will continue building the grid levels above the last one specified in the grd file
assuming the grid spacing between two last specified levels to be the spacing
between all the grid levels above.

lsf - large-scale forcing file. It specifies the large-scale temperature and vapor
tendencies, as well as large-scale wind that simulated mean wind may be nudged
(relaxed) to. To use that file, the prm file should set dolargescale=.true.

sfc – contains the time evolution of prescribed SST, and surface fluxes. To use
that file, the prm file should set dosfcforcing=.true.

rad - prescribed radiation heating rates. To use that file, the prm file should set
doradforcing=.true.

Important note: starting from SAM 6.7, there is an alternative way of setting the
case, that is using a standard NCAR SCAM’s (CAM single-column model) input
file in netcdf format. See doscamiopdata namelist parameter. Also, note that
starting from version 10, lst data file has been moved to RUNDATA directory
and should not be edited.

 10

NAMELIST VARIABLES

File prm contains the namelist variables that control the model execution and
also set some physical parameters. The parameters in PARAMETERS namelist
as well as their default values can be found in SRC/params.f90 and SRC/grid.f90
files. There are also separate namelists in microphysics modules.

Namelist PARAMETERS

Run controls

caseid - the run identifying name. All the names of output files will contain this
string. Put as much information as possible into this string for easy identification
of output files later.
 Example: caseid ='128x128x112_80m_40m_2s_LES'

nrestart - run type
 nrestart = 0 - initial run
 nrestart = 1 - restart (continue) previous run; the namelist
 parameters will be ignored except for
 nstop, nprint, nstat, and nstatfrq, and 2D and 3D output
 parameters
 nrestart = 2 - branch restart; the run will restart using restart files from
 another run. You need to specify both the case_restart and
 caseid_restart. The namelist parameters and forcing fields
 will be overwritten. Basically, this is a way to start a new
 run from already spun-up model run.

Freshly written restart files will overwrite older restart-files. So, if your restart
files are corrupted for any reason when being written, you won’t be able to restart
the run, it will be lost and have to be started the from the very beginning. For
very expensive long runs, it is advisable to back-up the restart files before each
restart. Also, if it is a new run (nrestart=0), the corresponding .stat file and other
output files in OUT_2D and OUT_3D directories should not exist. If they do, the
model will crash trying to overwrite those files. This is done to avoid accidental
overwrite of the older (potentially valuable) output files if accidently the caseid
string has not been changed for a new run.

 11

caseid_restart – the branch-root identification caseid for branch restart
case_restart – the branch-root identification case (case directory name) for
branch restart. Note that both case_restart and caseid_restart should be specified

restart_sep – if .true., a separate restart file for each MPI task will be written. By
default (restart_sep=.false.), the serial restart files are written (as if he model is
run on a serial computer rather than parallel). If very large domain is chosen to
run using massive number of processors, and the size of the serial restart files
could be too for a file system or mass-storage systems. Also, writing one large
restart file from the MPI task 0 when many processors are used can be quite a
communication bottleneck in the overall performance and hence should be
avoided. Writing a separate restart file for each MPI task is the solution.

nrestart_skip – skip writing restart files nrestart_skip times. By default
(nrestart_skip=0), the restart files will be written every time the horizontally
mean statistics file is updated (see nstat parameter); however, it may be
inefficient (slow) if the statistics file (written to OUT_STAT directory) is written
often and the domain is large. Therefore, this parameters allows one to skip
writing the restart files. For example, nrestart_skip=11 will write the restart every
12th time the statistics file is written. At the end of the run, the restart will be
always written regardless of the value of this parameter.

nstop - maximum number of time steps to complete the case. This is a required
parameter. Note that nstop is not written to the restart file, so it can be changed
before each restart. Therefore, this parameter should always be present in the
namelist.

nelapse – optional parameter to set the elapsed time (in time steps) to run before
stopping (optional parameter). Convenient for automatic job resubmission on
computers that have CPU time limit. After computing nelapse time steps, the
model stops gracefully after saving the restart files.

day0 - The initial calendar day of the run. This time will be used for interpolation
of the initial sounding read from snd file. Also, the current model time during the
run will be computed using day0. Remember that the solar radiation depends on
the current calendar day. If solar radiation is prescribed, day0 can be set to 0 as
the absolute value of the calendar day becomes in that case unimportant.
Output controls

 12

The following set of namelist parameters control the way the output files are
written. Remember that they all will be written into the appropriate OUT_*
directory.

In addition to the horizontally averaged statistics, the model can optionally output
the snapshots of 3-D fields (2-D fields in the case of 2-D model), as well as the
snapshots of 2-D x-y fields (1-D x fields in the case of 2-D model). For the list of
the variables written in these files check the SRC/write_fields3D.f90 and
SRC/write_fields2D.f90 files.

By default, to save storage space, since some of the files can be quite bulky, the
data is written in compressed form using 2-byte integers. However, there is an
option to write using floating point format, which would take 4 bytes per each
element of the output. In either case, the datasets can be converted into the
NETCDF files using the conversion utilities found in UTIL directory.

nprint - frequency of short printouts (in time steps) performed during the
execution. By default, the printing is done to the standard output. The printouts
contain minimum and maximum values of various fields among some other
information. The important number to watch here is the max and min values of
the mass divergence (variable div), which is theoretically zero for anelastic
model. As long as the absolute maximum of the divergence doesn’t exceed 1e-7,
there is no reason for concern. However, if that number is larger, or significantly
larger than, say, 1.e-4, something is wrong and the model should not be running.
Check the correctness of the domain dimensions to see if they have legal size.
Also, sometimes, certain set of compiler options can produce erroneous code, try
to compile with other smaller optimization or with no optimization at all, and see
if the divergence in a new run is within the acceptable limits.

nstat - number of time steps used for averaging the statistics output. Note that the
restart files will be written every nstat steps unless nrestart_skip is set.

nstatfrq - number of samples collected over the nstat steps.

Example: you use 10 sec time step, and the statistics should be computed and
averaged over one hour intervals, collecting samples separated by 2 minutes.
Then, you will need to set
nstat = 360
nstatfrq = 30

 13

doSAMconditionals – if .true., core (suffix: COR) and downdraft core (suffix:
CDN) averages will be outputted to *.stat file. Note that the number of fields can
be quite large and would increase the stat-file size considerably.

dosatupdnconditionals – if .true., cloudy updraft (suffix: SUP), cloudy
downdraft (suffix: SDN) and cloud-free (suffix: ENV for environment) averages
will also be output tp *.stat file. The threshold for cloud is 10^(-5) kg/kg, so that
there may be small amounts of cloud water and ice in the environmental air. Note
that the number of fields can be quite large and would increase the stat-file size
considerably.

doisccp – if .true., ISCCP satellite simulator will be on and a *.isccp file
containing the isccp histograms (if dosimfilesout=.true.) will be written in
OUT_STAT directory as well as several bulk statistics into the *.stat file. The file
can be converted into netcdf format with isccptonc utility found in UTIL.

domodis – if .true., MODIS satellite simulator will be on and a *.modis file
containing the isccp histograms (if dosimfilesout=.true.) will be written in
OUT_STAT directory as well as several bulk statistics into the *.stat file

domisr – if .true., MISR satellite simulator will be on and a *.misr file containing
the isccp histograms (if dosimfilesout=.true.) will be written in OUT_STAT
directory as well as several bulk statistics into the *.stat file

dosimfilesout – if .true., the satellite simulators’ histograms will be outputted
into separate files written in OUT_STAT directory.

output_sep – if .true., all the 2D and 3D output will be written separately for
each MPI process, that is separately for each subdomain. This is done for speed
when massively parallel computers are used to avoid communication bottleneck.
Each 2D and 3D file for each subdomain will be appended with the underscore
and the rank (index) of the subdomain that wrote it. So, if running on 2048
processors, 2048 times as many files will be written. The files should be glued
together after the run using some a suitable utility found in UTIL directory (for
example, com3D_sep2one for *.com3D files). The SCRIPTS/FILES directory
contains some csh scripts that help to automate the process when many files need
to be glued together.

 14

The following parameters control writing 2-D information (1-D in case of 2-D
model). Those are horizontal fields (x,y). Note that by default the time samples
will be appended to each other in the same file. In the case of compressed data,
the file extension will be .2Dcom, in the case of binary output - .2Dbin. By
default, the compressed 2-byte output will be used. You could postprocess these
files into netcdf format using 2Dcom2nc and 2Dbin2nc utilities, respectively,
found in UTIL directory.

nsave2D: sampling period of 2D fields in model steps. The fields will be
averaged over that sampling period if save2Davg=.true.; otherwise, the saved
fields will be snapshots at the end of each sampling period

nsave2Dstart: the time step to start sampling 2D data data. If this time step is
larger than the nstop parameter, 2-D output files will never be written.

nsave2Dend: the time step to finish sampling 2-D data. No 2D data will be
sampled after the time step larger than nsave2Dend.

save2Dbin – if .true., the output will be saved as floating-point binary.

save2Dsep - if .true., each 2-D horizonatal snapshot or sampling period average
will be saved into a separate file.

save2Davg - if .true., each 2-D field will be averaged over sampling period.
Otherwise, the snapshots collected at the very end of the sampling period will be
written.

dogzip2D if true, the output file will be further compressed using gzip utility (can
be very slow for very big files; the model will be standing by waiting for the
compression to finish)

The following parameters control writing the snapshots of the 3-D fields. They
are similar to 2-D parameters with the exception that the 3-D data will always be
written as a snapshot, one per file, so no time averaging is done. The files will
contain the time-step stamp in their name. In the case of 2-byte compressed data,
the file extension will be .com3D, in the case of binary output - .bin3D. The files
can be postprocessed into netcdf format using com3D2nc (com2D2nc) and

 15

bin3D2nc (bin2D2nc) utilities, respectively, found in UTIL directory. By default,
the 2-byte compression will be used.

nsave3D: frequency of writing 3D snapshots in time steps.

nsave3Dstart: the time step to start writing 3D snapshots. If this timestep is
larger than the nstop parameter, no 3-D output will be written.

nsave3Dend: the time step to finish writing 3-D snapshots. No data will be
written after the time step larger than nsave3Dend.

save3Dbin – if .true., the output will be saved in the binary format.

save3Dsep - if .true., each 3-D snapshot will be saved into separate file. Always
true for 3-D model output; however, for 2D runs, the x-z snapshots will be saved
to a single file unless using this parameter.

dogzip3D if true the output file will be further compressed using gzip utility (can
be very slow for very big files)

The following parameters control saving the 3-D moment-statistics fields. The
fields will be averaged to a coarser grid as specified by the navgmom_x and
navgmom_y variables set in domain.f90. See Changes_log/README.UUmods
file for more details.

The data will represent snapshots of fields, so no time averaging is done. The
files will contain the time step stamp in their name. In the case of compressed
data, the file extension will be .com3D, in the case of binary output - .bin3D. If
the 2-D snapshots are appended into one file, the extensions will be .com2D and
bin2D respectively. You could postprocess the files into the NETCDF file using
com3D2nc (com2D2nc) and bin3D2nc (bin2D2nc) utilities, respectively, found
in UTIL directory.

nstatmom: frequency of writing (steps).

nstatmomstart: the time step to start sampling moment statistics. If this timestep
is larger than the nstop parameter, no stat-moment output file will be written.

 16

nstatmomend: the time step to finish saving stat-moment data. No data will be
written after the time step larger than nstatmomend.

savemombin – if .true., the output will not be compressed, but rather will be
saved in the binary format.

savemomsep - each 3-D snapshot will be saved into separate file. Always true
for 3-D model output; however, for 2D runs, the x-z snapshots can be saved to a
single file using this parameter.

The following parameters control saving 1-byte data used for animations
(movies). All movie files for separately for several 2-D (x-y) fields are written
into OUT_MOVIES directory. The code can be found in movies.f90. Note that
each processor writes its own movie file, which then need to be glued together.
There is a utility called glue_movie_raw in UTIL directory that can glue together
all these files and produces a single RAW format *.raw file for each 2-D field.
One can convert the *.raw file into animated gif-movie using Image Magick
convert command like:

convert -depth 8 -size nx_gl x ny_gl file.raw file.gif

where nx_gl and ny_gl are the domain sizes in x and y. You could also convert
the raw file into video file in some format rather than to animated-gif, but it is
beyond the scope of this document and vast internet resources on the subject
exist.

The movie creation is controlled by the following namelist parameters:

nmovie: frequency of saving (time steps).

nmoviestart: the time step to start saving moment statistics. If this timestep is
large than the nstop parameter, no stat-moment output file will be written.

nmovieend: the time step to finish saving stat-moment data. No data will be
appended after the time step larger than nmovieend.

 17

Physics controls

dx - constant horizontal grid spacing (in m) in the x direction (West-East).
dy - constant horizontal grid spacing (in m) in the y direction (South-North).
dz – constant vertical grid spacing (in m). Works only in pair with the
dz_constant=.true.; Otherwise, the vertical grid is set by the grd file.

dz_constant – if .true., the vertical grid step is constant and set by the variable
dz; no grd file is then needed to run the case.

dt - time step (in seconds). When setting dt, try to set it such that the anticipated
maximum advective Courant number is not above 0.5. The dynamical core uses
Adams-Bashforth time scheme with variable time step, so in the event of high
Courant number the time step will be automatically divided by 2, so the time step
will be subcycled twice, which adds to the expense. If halving the time step is
still not enough to keep the model linearly stable, the time step will be further
divided by two. This process will be repeated until 4th division is needed. At that
point, the model is likely unstable, and the run will abort. It is also possible that
rather than blaming the model, it is you who chose dt to be too large, so the
model easily ends up dividing it more than 4 times when strong updrafts or
hurricane winds develop.

LES - if .true., the model is run as a traditional LES (Large-Eddy Simulation
Mode), that is the surface fluxes will be computed assuming the horizontally
average values of velocity and scalars, that is the same value of the surface flux is
applied everywhere in the domain. Also, unlike CRM, in LES mode, the cloud is
diagnosed as cloud condensate higher than 0. Also, the updraft core is diagnosed
as being positively buoyant.

CRM - if .true., the model is run as a CRM (Cloud-Resolving Model), so that
the surface fluxes computed using local values of wind and scalars. Also, unlike
LES, in CRM model the cloud is diagnosed as cloud condensate higher than 1%
of local supersaturation with respect to water. Also, the updraft core is diagnosed
differently as vertical velocity exceeding 1 m/s regardless of buoyancy.

LAND – if .true., the surface is the land. The soilwetness parameter can also be
set (it is swamp by default). It is not recommended to use SAM6.9 over land;
future versions may have a much more comprehensive land-surface model. The
value of prescribed effective radius over the land is about 8 mkm.

 18

soil_wetness – parameter that controls the relative ‘wetness’ of the soil with 0
meaning bare soil (no moisture) and 1 completely saturated soil (swamp).

z0 – surface roughness length for the land (m).

OCEAN – if .true., the surface is the ocean. The value of prescribed effective
radius over the ocean is about 14 mkm.

dowallx – if .true., solid walls will be used as domain boundaries in x direction
rather than periodical boundaries.

dowally – if .true., solid walls will be used as domain boundaries in y direction
rather than periodical boundaries. Useful when varying Coriolis parameter in
meridional direction (in y) is used as periodical conditions in that case don’t
make sense (see dofplane and dobetaplane).

rundatadir – path to the directory that contains the internal data necessary for
running SAM; by default, these datasets are found in RUNDATA directory in
SAM’s root directory.

dosgs – if .true., do subgrid-scale (SGS) parameterization.

doscalar – if .true., transport a passive scalar in the place of prognostic SGS
TKE (works only if dosmagor=.true.)

dodamping – if .true., damp gravity waves at the domain top

doupperbound – if .true., maintain the temp and vapor gradient at the domain
top

docloud – if .true., allow cloud formation

doprecip – if .true., allow precipitation

longitude0 - longituide (degrees); negative for west and positive for east from the
Greenwich meridian

latitude0 - latitude (degrees); positive for North, negative for South.

docoriolis – if .true., the Coriolis force is applied

 19

docorioulisz – if .true, the vertical Coriolis patameter is also applied

dofplane – if .true., the Coriolis parameter is constant everywhere (f-plane
approximation); otherwise, it will vary in y direction. The center of the domain is
set by latitude0. In the case when dofplane=.false. and docoriolis=.true., the
dowally will be automatically set to .true., as periodic boundary conditions in y
direction won’t make sense. Don’t forget to set docoriolis flag to .true. to have
the Coriolis force on.

fcor - Coriolis parameter (1/s) in the case when dofplain=.true.. Don’t forget to
set docoriolis flag to .true. to have the Coriolis force on.

dolongwave – if .true., compute longwave radiation

doshortwave – if .true., compute shortwave radiation

nrad - frequency (in time steps) of updating the radiation heating rates by
computing radiative transfer. For example, nrad = 20 means that radiation will
be called every 20 model time steps. Computations of radiative heating rates is
expensive; therefore, they should not be updated every time step. Generally, for
deep convection, 3-5 minutes frequency is adequate.

doperpetual – if .true., sun is perpetual with the total incoming radiation that
matches the normal (moving) sun's input for the day defined by day0 parameter.

dosolarconstant used together with the doperpetual flag set to .true..

solar_constant – value of the sun solar input when doperpetual = .true.
Generally, it is not equal to the actual solar constant as for perpertual run, there is
averaging over the whole day.

zenith_angle – average value of the zenith angle when doperpetual = .true.

doseasons – if .true., the solar incoming radiation change according to current
calendar day, that is there is seasonal and diurnal cycle. If .false., then solar
diurnal cycle is always the same as during the initial day defined by the day0
parameter

doradforcing – if .true., prescribed radiation from the rad file will be applied

 20

doradhomo – if .true., homogenization the radiative heating rates will be
performed that the rates computed for each column separately will then be
horizontally averaged and the average profile will be applied in each grid
column.

doradlon – if .true., the solar zenith angle depends on the exact longitude of a
grid point; otherwise, the solar angle is the same everywhere as if longitude =
longitute0 at the center of the domain.

doradlat - if .true., the solar zenith angle depends on the exact latitude of a grid
point; otherwise, the solar angle is the same everywhere as if latitude = latitude0
at the center of the domain.

nxco2 – factor of increase of CO2 relative the present as set by the radiation data
files; for example, nxco2=2 means double-CO2 run.

dotracers – if .true., tracers will be transported if ntracers > 0 (set in
domain.f90)

dosmoke – smoke-cloud case. Optically thick smoke is considered instead of
water vapor, so docloud should be set to .false. Initialize smoke concentration in
sounding file snd in place of q field. If doradsimple is .true., then
rad_simple_smoke() subroutine will be called; it is an error however to call
conventional radiation. Note that to work correctly, MICRO_SAM1MOM
microphysics should be chosen at compilation. (SAM6.7.4 or later)

dosurface – if .true., compute surface fluxes

dosfchomo – if .true., the computed surface fluxes will be horizontally
homogenized (averaged)

dolargescale – if .true., the large-scale forcing from the lsf file will be applied

dosfcforcing – if .true., the surface forcing will be read from sfc file

ocean_type integer parameter that controls the initialization of SST. If =0
(default) SST is constant everywhere; =1 or =2 - sinusoidal distribution in x, and
y directions, respectively, with mean tabs_s and amplitude delta_sst as set in the
simple_ocean.f90 (set_sst procedure). If you want to set your own SST

 21

distribution, or read it from file, you need to create a new entry in set_sst
subroutine under ocean_type=4 or larger. Never rewrite the default code as that
may lead to some unexpected results, just extend it.

tabs_s – set SST in K; works when dosfcforcing=.false. and ocean_type is set to
0 (default). If ocean_type=1, or ocean_type=2, then tabs_s is the mean SST

delta_sst is the amplitude of sinusoidal SST about tabs_s when ocean type=1 or
ocean type=2, so that the maximum SST is at the domain center, minimum value
is tabs_s–delta_sst, maximum tabs_s+delta_sst.

dodynamicocean - if .true., the SST will be interactive using a simple mixed-
layer model. To take advantage of this option, the dosfcforcing flag should be set
to .false.. The ocean model is implemented in simple_ocean.f90 file, so you must
edit that file to change the mixed-layer parameters. (See also ocean_type).

timesimpleocean – day to start using slab-ocean model

depth_slab_ocean – depth of the slab ocean in meters; works with
dodynamicocean=.true.

Szero - mean ocean transport (away) for the slab ocean model (W/m2)

deltas - amplitude of the linear variation of ocean transport (away) along the x
direction for the slab ocean model (W/m2), so the total transport is Szero +
deltas*|2x/L – 1|, where L is domain width.

donudging_uv - if .true., nudge horizontal mean u and v to the specified in lsf (if
dolargescale=.true.) or snd files

donudging_tq - if .true., nudge both horizontal mean t and q to specified in snd
file

donudging_t - if .true., nudge horizontal mean t to specified in snd file

donudging_q - if .true., nudge horizontal mean q to specified in snd file

nudging_uv_z1, nudging_uv_z2 – nudging height boundaries (z2>z1) for uv,
meters. Default – nudge at all levels.

 22

nudging_t_z1, nudging_t_z2 – nudging height boundaries (z2>z1) for t, meters.
Default – nudge at all levels.

nudging_q_z1, nudging_q_z2 – nudging height boundaries (z2>z1) for q,
meters. Default – nudge at all levels.

tauls – nudging time-scale for uv and for tq if tautqls is not set

tautqls – nudging time-scale for tq

doensemble - if .true., run ensemble member (nensemble must then be specified)
generated by slight perturbation of the initial sounding using the tqpert file in
RUNDATA

nensemble – ensemble member index needed for run initialization

SFC_FLX_FXD – latent heat, sensible heat, and momentum (unless
SFC_TAU_FLX=.false.) fluxes are prescribed (.true.) or computed.(.false.) If
.true., the prescribed fluxes will be read from sfc file if dosfcforcing=.true., or set
by fluxt0 (sensible flux) fluxq0 (latent) in W/m2, and tau0 in m2/s2.

SFC_TAU_FXD – momentum fluxes are prescribed (.true.) or computed.(.false.)
If .true., the prescribed flux will be read from sfc file if dosfcforcing=.true., or set
by tau0 namelist parameter otherwise in m2/s2.

tau0 – prescribed surface momentum flux (m2/s2) when SFC_TAU_FXD=.true.
and dosfcforcing=.false.

fluxt0 – prescribed surface sensible heat flux (W/m2) when
SFC_FLX_FXD=.true. and dosfcforcing=.false.

fluxq0 – prescribed surface latent heat flux (W/m2) when SFC_FLX_FXD=.true.
and dosfcforcing=.false.

The following parameters control the case setup using CAM’s single-column
model’s SCAM netcdf input file. Note that no snd, lsf, and sfc files are needed
then.

doscamiopdata – if .true., then the case setup is done using a SCAM file

 23

dozero_out_day0 – if .true., forces the initial calendar day be 0

iopfile – specify the path and name of the SCAP input file

Initialization of motion

There are two ways to initialize the fluid motion in a new run. One is by
specifying some initial random noise in the boundary layer, and the other is to
specify a ‘warm bubble’. The first way is preferred when using the model to
study evolution of turbulent statistics, the second when one wants to study
evolution of an explosively developing single cloud (for example, supercell). The
following namelist variables control initialization of the fluid motion.

perturb_type – type of perturbation that can be set to integer values (default 0 –
initial white noise in temperature field near the surface). You can look at specific
initializations for different values of this parameter in setperturb.f90 file. For
example, value 2 would create a warm bubble. The bubble is controlled by the
following parameters:

bubble_x0, bubble_y0, bubble_z0 – coordinate of the bubble center in meters;

bubble_radius_hor – horizontal radius in meters;

bubble_radius_ver – vertical radius in meters;

bubble_dtemp – bubble temperature perturbation in K with respect to the
environment. Temperature perturbation is varying as cosine squared with
maximum at the center and zero at the bubble edges.

bubble_dq – bubble water vapor perturbation in kg/kg with respect to the
environment. Also changes as a cosine-squared function with zero perturbation at
the bubble edges.

Tracers

Starting from version 6.4, one can add arbitrary number of tracers to be
transported in the domain. The tracer physics can also be added. First, one needs

 24

to specify the number of tracers ntracers in domain.f90. A minimal tracer
interface can be found in module tracers.f90 . What is guaranteed by the code is
that the tracers will be advected and mixed around the domain automatically. The
user only needs to supply initialization code, surface fluxes if different than zero,
and physics code that describes the change in tracers due to some processes. The
code also will output the horizontally averaged statistics with the names of tracers
as TR01, TR02, etc. Again, only a generic interface is provided, and it is a user
who should insert a specific code except for advection and SGS diffusion which
is done automatically. In order to do tracers, don’t forget to set dotracers = .true.
in the namelist-file prm.

 25

Namelist MICRO_M2005

The MICRO_M2005 microphysics package has its own namelist variables. The
namelist and default values are described in
SRC/MICRO_M2005/microphysics.f90 file.

doicemicro – if .true., use ice species (snow/cloud ice/graupel)

dograupel – if .true., graupel is used for falling ice rather than hail

dohail – if .true., graupel species has qualities of hail

osb_warm_rain – if .true., use Seifert & Beheng (2001) warm rain
parameterization in place of Khairoutdinov and Kogan (2000)

dopredictNc – if .true., predict cloud drop number based on CCN concentration

dospecifyaerosol – if .true., specify two modes of (sulfate) aerosol (see aer_rm1,
aer_rm2)

dosubgridw – if .true., use estimate of subgrid w in microphysics

doarcticicenucl – if .true., use arctic parameter values for ice nucleation

docloudedgeactivation – if .true., activate droplets at cloud edges as well as base

Nc0 – prescribed droplet number concentration (#/cm3)

ccnconst, ccnexpnt – CCN power activation spectrum (N=C S^k) parameters,
#/cm3

aer_rm1, aer_rm2 - two modes of aerosol spectrum used when
dospecifyaerosol=T

aer_sig1, aer_sig2 - geom standard deviation of aerosol size distribution

dofix_pgam – if .true., specify the gamma in gamma distribution for cloud
droplets

pgam_fixed – gamma-parameter

 26

douse_reffc – if .true., compute cloud water effective radius for radiation

douse_reffi – if .true., compute ice-crystal effective size for radiation

Namelist SGS_TKE

dosmagor – if .true., do the Smagorinsky-type SGS closure rather than
prognostic TKE 1.5 order closure. Default is .true.

Namelist MICRO_DRIZZLE

The MICRO_DRIZZLE microphysics used the drizzle water parameterization
based on Khairoutdinov and Kogan (2000) microphysics. It is a warm-rain
microphysics with no ice; therefore, it is only suitable for the shallow clouds,
preferably stratocumulus-topped boundary layers. There is only one parameter in
the namelist MICRO_DRIZZLE:

Nc0 – prescribed droplet number concentration (#/cm3)

